Tentamen Functionaalanalyse 25/11/04

1. (a) Let $F: L^2[0,\pi] \to \mathbb{C}$ be defined by

$$F(f) := \int_0^{\pi} (\sin(t) + \cos(t)) f(t) dt, \qquad f \in L^2[0, \pi].$$

Show that F is linear, and determine ||F||.

(b) Let $G:L^2[0,\pi]\to\mathbb{C}$ be a bounded linear functional defined on $L^2[0,\pi]$. Does there exist some $g\in L^2[0,\pi]$ such that G is of the form

 $G(f) = 2\pi i \int_0^{\pi} e^{it} f(t)g(t)dt, \quad f \in L^2[0,\pi]?$

Justify the answer.

- 2. Let T be a bounded linear operator from a Banach space \mathfrak{B} into itself with domain dom $T \subset \mathfrak{B}$. Show that T is closed if and only if dom T is closed.
- 3. Let $\mathfrak H$ be a Hilbert space and let T and S be linear operators on $\mathfrak H$ for which

$$(Tf,g)=(f,Sg), \quad f,g\in\mathfrak{H}.$$

Show that T, S are bounded operators, and that $S = T^*$. Hint. Use the closed graph theorem.

4. Let E be an infinite-dimensional normed space. Let $x \in E$ with ||x|| = 1, and let $U = \text{span}\{x\}$. Let $\ell: U \to \mathbb{C}$ be the linear functional on U such that $\ell(x) = i + 2$.

Does there exist some $L \in E'$ (E' is the dual space of E) such that ℓ is the restriction of L on U: $L|_{U} = \ell$, and

- (a) ||L|| = 2?
- (b) $||L|| = \sqrt{5}$?
- (c) $||L|| \ge 5$?

Justify the answers!